A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses.

نویسندگان

  • Kailang Wu
  • Lang Chen
  • Guiqing Peng
  • Wenbo Zhou
  • Christopher A Pennell
  • Louis M Mansky
  • Robert J Geraghty
  • Fang Li
چکیده

How viruses evolve to select their receptor proteins for host cell entry is puzzling. We recently determined the crystal structures of NL63 coronavirus (NL63-CoV) and SARS coronavirus (SARS-CoV) receptor-binding domains (RBDs), each complexed with their common receptor, human angiotensin-converting enzyme 2 (hACE2), and proposed the existence of a virus-binding hot spot on hACE2. Here we investigated the function of this hypothetical hot spot using structure-guided biochemical and functional assays. The hot spot consists of a salt bridge surrounded by hydrophobic tunnel walls. Mutations that disturb the hot spot structure have significant effects on virus/receptor interactions, revealing critical energy contributions from the hot spot structure. The tunnel structure at the NL63-CoV/hACE2 interface is more compact than that at the SARS-CoV/hACE2 interface, and hence RBD/hACE2 binding affinities are decreased either by NL63-CoV mutations decreasing the tunnel space or by SARS-CoV mutations increasing the tunnel space. Furthermore, NL63-CoV RBD inhibits hACE2-dependent transduction by SARS-CoV spike protein, a successful application of the hot spot theory that has the potential to become a new antiviral strategy against SARS-CoV infections. These results suggest that the structural features of the hot spot on hACE2 were among the driving forces for the convergent evolution of NL63-CoV and SARS-CoV.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The evil role of spike in the coronaviruses: structure, function and evolution

1. Lu R, Zhao X, Li J, et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574 2. Zhou P, Tachedjian M, Wynne JW, et al (2016) Contraction of the type i IFN locus and unusual constitutive expression of IFN-α in bats. Proc Natl Acad Sci U S A 113:2696–2701 . doi: 10.1073/pnas.1518240113 3. Wu A, P...

متن کامل

COVID-19: a hypothesis to prevent SARS-CoV-2 from entering respiratory cells

Coronaviruses (CoVs) are a group of viruses that induce infection in the respiratory and other systems in the human body. There are two coronaviruses that transmitted from animals to humans including severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) (1). The novel coronavirus that appeared at first in Wuhan, China, in December 2019 was named as severe acut...

متن کامل

Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor.

NL63 coronavirus (NL63-CoV), a prevalent human respiratory virus, is the only group I coronavirus known to use angiotensin-converting enzyme 2 (ACE2) as its receptor. Incidentally, ACE2 is also used by group II SARS coronavirus (SARS-CoV). We investigated how different groups of coronaviruses recognize the same receptor, whereas homologous group I coronaviruses recognize different receptors. We...

متن کامل

Angiotensin-Converting Enzymes, the Key Components in the Pathogenesis of COVID-19 Infection and their Role in the Interaction of SARS-Cov-2 with Human Host Cells

Introduction: Over the past 20 years, seven coronaviruses have caused more or less severe respiratory diseases in humans. Among these, the most important ones are SARS-CoV and the coronavirus, a similar virus that has created a pandemic called Covid-19 since 2019, belonging to the b-category of beta-coronaviruses called Sarbecovirus. This virus is due to a kind of spike-like structure to the A...

متن کامل

Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2

Although in different groups, the coronaviruses severe acute respiratory syndrome-coronavirus (SARS-CoV) and NL63 use the same receptor, angiotensin converting enzyme (ACE)-2, for entry into the host cell. Despite this common receptor, the consequence of entry is very different; severe respiratory distress in the case of SARS-CoV but frequently only a mild respiratory infection for NL63. Using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 85 11  شماره 

صفحات  -

تاریخ انتشار 2011